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I. FOREWnRD.

The work done durina the oeriod covered by the present Final Report

constitutes extensions and aeneralizations of the results found under

previous crants and related to the application of functional analysis to

Fluid Mecranics.

T he specific subject dealt with is that of closed splines which were

introduced for the first time by the principal investigator as the appro-

priate solines to solve interpolation problems commected with the flow

fields around airfoils.

This work has lead to the followino paoers:

I. L. NNaooiitano:A new Characterization of Closed Splines, accepted

for oublication in the Italian Journal:Aerotecnica Missili e Spazio.

2. L.G.Napolitano:"Closed Smoothing Splines."

The second Daoer will be subtioned either to the previously mentioned

Italian Journal or to an Internationai Journal.

At the time of the writing of the oresent Final Report the final choice

had not been made yet.

The sub.ect Final Report contains, in extenso, the above two papers

which constitute Part I and II, respectively, of the report itself.



PART I

A new Characterization of Closed Splines.
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A NEW CHARACTERIZATION OF CLOSED SPLINES

I. INTRODUCTInN

The author has oreviously defined and studied new classes of

s o!.e functions, referred to as closed solines, which are the oroper

splines to be used when interpolating data prescribed on a set of

points belonaina to a closed contour C El].

The theory of closed solines was based on the Hilbert-space

anoroach L21 and was thus formulated in general terms. Different

classes of closed solines can be obtained by approoriate choices

of the Hilbert spaces and of the operators acting on them.

Two anolications of the general theory have been reported in

LI] and 3] . [I] deals with closed splines interoolatina values

of a function orescribed at a aiven set of points. L31 deals with

Hermite closed splines, i.e. splines interpolating data representing

values of a function and of its derivatives prescribed at a given

set of noints.

Many other classes of closed spline functions can be considered

which solve other interpolation problems of practical relevance.

Thus, for instance:

i) The orescribed data may represent a linear combination:

ii)Often, exoecially in the case of experimental measurements,

one does not know the value of a function at one point but,



rather, its averaae value over a small interLYal. Thus the pre-

scribed data may be of the form

where (ail, 5i) are the subintervals to which average values corre-

spond and the weiohtino factQrs Wi account for the possible

non-uniformity of measurements.

iii)The Qrescribed data may represent values of a function and of

any number of its subsequent derivatives or, also, a linear

combination of them

iv) one may consider trigonometric spline functions (in this case

what is being is not previous cases, but the type of operator).

This l&st is only indicative and is noticeably enlarged if two

and three dimensional splines are considered.

For all cases mentioned above the characterization and proper-

ties of classical splines ( i.e. splines defined over a finite in-

terval)are well established.

Characterization and pronerties of closed splines ( i.e. spli-

nes defined over a closed contour), on the contrary, are established

only in the two previously mentioned cases of normal (i) and Hermite

C3] splines. All other classes of splines remain to be characteri-

zed and studied.

The application of the qeneral theory, as formulated in LII ,

entails a number of lenothydevelooments as esemolified by the contents

of L 11 and 3 - It appearred thus desirable to further examine the

general theory with the aim of reformulating it so as to make it pos-

sible to utilize, to the laenest possible extent, whatever is already

known, and available, from the corresoonding classes of classical
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sol ines

This task would also help to sned further light on the nature and

types of differences existino between classical and closed splines.

This further develooment of the qeneral theory of closed splines

is oresented in this paper for the case in which the space X is an

arbitrary space of functions defined over a closed interval.

The new formulation is first arDlied to the cases already studied

in L11] , L3] in order to further clarify the essence and actual pro-

cedure of the new aporoach.

Then, as a futher example of anolication, the new class of closed

spline of the type (I) above is characterized and its properties con-

cisely derived. This case shows the extreme usefulness of the new

approach and is indicative of its application to the other classes

of closed splines mentioned above.

2. RELEVANT RESULTS FROM ABSRACT-SPACE THEORY.

A number of basic results of the Hilbert-soace spline theory are

needed. They are concisely derived in this section.

Let X,Y and Z be three real Hilbert spaces; T: X ->Y; A:X ->Z

two linear onto continuous operator and denote by < ' I

the inner product and the orthononal complement of the space W;

and by R(B), N(B), B'the ranqe, the null space and the adjoint of

the operator B. R(T) and R(A) are closed in Y and Z, respectively.

Definition and properties of the spline space S CX correspon-

ding to T and A hinne on the following equalities:

X Z (2. I)
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where t, -£econd one follows from the definition of adjoint operator.

From eqs. (2.1) it follows that:

I) 0 X G (T--) (2.2)

2) < x-s6A-) (2.3)

Conseauently: i) if N(T)+ N(A) is closed in X there will always be

at least one ., e2Z satisfyina eq.(2.1) for any Ax &Z(existence

theorem); ii) if N(T) n N(A)= 0 this 'I is unique for any given

Ax=ze Z. (Uniqueness theorem) 527.

The equation:

Ax=z (2.4)

with z an arbitrary but fijed element of Z characterizes the "constra-

i n t s'.'

Eq. (2.3) characterizes the spline space S C X associated with the

operators (T,A).
A.0

When the space Z is finite: ZiR , with its usual inner product,

the ooerator A can be represented as a set of (n) linear and conti-

nuous operators Ki on X:

> .- ,(2.5)

< < 4-

and: -

> I, .... ,t( x

> <

Z,. -Z

Furthermore:

R(A): Z

R (A ): LN(A) A (Z)
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and:

dim R(A',= dim R(A )=n

co-dim N(A)= finite (2.6)

dim 1(T = q = finite

The finiteness of N(T) follows from the uniqueness condition N(T)

,-N(,A = {, and the fact that N(A) has finite co-dimension.

From the ,iell known relation between the dimensions of subspaces

Ww ,'is

d m ' I '- di . 2-,i l m di I., 4 dim ( W n vi -d im t4

and the relations holdino for a li;iear continuous operator with

closed rannes:

it follows --hat, for WJv~>R s)~~

hence2 .(7)

F rom e. a. 3~

hne n ce T' - ! l0)]LnR 1s that:

T6 & R(Cin P.()

from whicn; 'loon eq.(2.6)

. T(-S)- (2.8)
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REMARK I

in essence, n is the number of constraints (2.4) which are imposed:

i.e. the number of data that are prescribed.

REM ARK*2

-he dimension of T(S) is enual to the number (n) of data prescribed

less the dimension (q) of the null space of

REMARK 7

The dimension of the soline snace S is equal to the number of data

tnat are Drescribed.

RE"ARK

All above is quite oeneral. Whether one considers classical or closed

solines depends on the set ove,- which the function space X is defined.

3. CHARACTERIZATION OF SPLINES.

Th-le actual orocedure most often used to characterize classical

solines of a civen class can be summarized as follows.

Given the (n) oDerators Ki one finds the function by

solvinn enuation (?.I)

= (3.1)

subject tu the conditions of ea. (2.2):

SIl -- =Z, -<< ,> 'x (3.2)

whic in qeneral, are readi ' expressed as costraints on the kA .

The numner of these cons'raints is equal to Cim N(T), i.e. to (q)

e./2.6)J Thus, as required, by eq..(2.8), / contains (n-q)

arbitrary paramenters. TheY constitute, together with the (q) para-

meters involved in oettino from -= 3 to - , the n indipen-

dent :arameters upon which s depends as required by eq.(2.8) 2
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The solution of eq. (3.1) can often be put in the form £21:

(3. 2).T Z( 3.2)

where the.' satisfy the (q) constrantsVquestions to be addressed are:

Can the known elements / enterina the characterization of classical

sQlines be used to characterize the closed splines? if so, how?

4. CORPESPnNnENCE BETWEEN CLASSICAL AND CLOSED SPLINES.

The croblem formulated at the end of the preceeding section is

Drooeryy'vcorreloondence between the spaces and operators corresoon-

dine to the classical splines and those corresponding to the closed

sol i nes.

In this section, all ouantities oertaining to closed splines will

be denoted with a subscript (c).

It will be assumed that the space X refers to functions defined

over the interval [6,1I]

Generalization to other cases may, in principle, be possible but

will not be cosidered here.

The set of ooints at which data are prescribed can be characterized

by the values Z of a non-dimensional parameterZ. These values are

such that:

For closed splines, the 2, 's are the curvilinear coordinates alona

an arbitrary contour, C, sufficiently smooth and regular, measured

from one of itp points ( z0) and normalized with respect to its

length (2 =I).The common point of '4coordinates 2=-.will be

referred t as closure point.
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A first corresoondence is thus established, for both X and XC

are defined, unless an inessertial stretchina, over the same set

T mL_:, L IH

The elements xC of X must satisfy continuity requirementsc

at the closure ooint whose number and nature deoends on the type

of sDace X. Hence:I X C X

c

The last reauirement for the oroblem at hand to be well posed is

that the classes of splines, be the same. Thi- means that .C

Z L 2_ and the operators Tc, Ac; Tc: Xc -0Y; Ac: Xc -->Z,

be the restrictions of the operators '7 and A to Xc.

The most relevant consecuences of these correspondeces will now

be analyzed.

To becin with; from Xc CX it may follow that N(Tc) C N(T) and:

so that, if ScCXc C X is the space of closed spline functions:

Furthermore, when there are also differences in "nature"

between and b because they satisfy different constraints.

To elucidate this point consider the set as a base and

6enote by F c Y the subsoace spaimed by this base. On the olansi-

ble assumotion that the 1. 's are indipendent, F is an (n+l)-

dimensional soace. Consider now the element f & F defined by:

f..4 K4



where th L 3 are now arbitrary. Clearly TSC F and, more specifi-

, - 'E -S)iff the -. satisfy the (q) relations:

K. 0 x N )

If N((Tc) CN(T) and the A, satisfy only the relations

1-I -

Z__ A x1 > CzQ 4-NLL (4.2)

f beion s neither toT(S)nor to Tc(Sc)
The difference between '.frand V is now evident. It is solely due

C-

to the smaller of constraints imoosed on thel.by the smaller dimen-
A L.

sion of NI(Tc) and, does not involve the /-<'S. Hence it must refledt

the different behaviour of y and at the closure point. For t the

closure ooint can be any noint and thus the features of t at the clo-

sure coint are the same as those at any other point. It will be pre-

sently seen that this criterion leads to the new characterization of

which makes uses of all known orooerties of /and /l-
Emted a subsoace od F into an higher dimensional space Fc such that

T c (S C) C F r.

On'y onc of the two elements; for (/ of the basis of F is rele-

vant, as it can be inferred from the continuity conditions at the clo-

sure point.

Thus the base of Fc contains the first n element . On the other hand,

in order for Tc(Sc)CFc, the dimension p of Fc must be such that once

the qc constraints (4.2) and the remaining ( q-qc) satisfied by /'

but not -. are endorsed, one obtains a n+I-qc) dimensional space, as

required by eq. (4.1).

Hence p-qc-(q-qc)=n+I-ac, i.e. p=n+(q-qc-I).



The element F. can thus be formally written as:

-- C (4. 3)

where the 4-< must be such that TcScC Fc and can usually be found,

by insoection, once the expression of the 3/< is known.

The new formulation for the characterization of closed soline

is obtained by combining eq.(4.3) with the oreviously mentioned

criterion.

Let S any classical spline space defined over the interval

@I] .1and call interior point Pi any point within this interval

and extremal the left and riaht extreme of the interval.

The characterization of an element s6S defines the func-

tion yand the properties of Ts at interior points. In particu-

lar one knows:

I) the number and types of discontinuities at interior points.

2) the number and types of continuity properties at the interior

ooints.

Denote by I D i the set of interior point discontinuities and

by {C I the set of interior point continuity prooerties.

Then the following characterization of closed splines of the

same class holds:

New characterization of closed splines.

For any class of classical solines defined over a closed interval

the corresnondinq closed spline can be expressed as:

, in
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where is niven by the classical sDline, is inferred by

inspection and the (n+q-q. + I ) coefficients A' and f- are deter-

mined AimOosino: at the closure ooint:

I) the connruence of the discontinuites of the set JD .

2) the vanishino of the discontinuities corresponding to the set

I
Condition (I) can be exoressed for an arbitrary function h discon-

tinuous at the Doints Pi:

as ( see /'3 for the proof):

•(4.5)

where :

REPAARK I

Once = T' sc is known, obtaining sc is a trival matter.

REMARK 2

For classical splines conditions (2) are, by definition, not

satisfied.
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5. EXAMPLES OF APPLICATION OF THE NEW FORMULATION.

The classes of splines for which the closed ones have already

been derived LI I, [3]will be dealt with first to help clarifying

the procedure to be used.

5.1 Normal snlines LI]

Soaces and ooerators are chosen as:

X= T 22 =c

- L,,

where is the Hilbert soace of real functions having square-

interarable derivatives.

From _2 I one gets

i) _ t-I

with:

I if 

i f

ii)

iii)the derivative of order (q-I) of . is discontinuous (set . Dj

of dimension 1)

iv) / and its derivatives up to order fq-2) are continuous (set

4C lof dimension q-I)
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For closed splines defined over the closed contour C dim N(Tc)=dim

N H- (C)=I [ ll, hence q :.

Thus, upon eq.(4.4)

with the (r+q) coefficients satisfying the conditions:

Remarks

For conventional splines:

The conditions analogous to the first of eqs.(5.I)

L

.- ' (5.2)

expresses the discontinuity /f+I at the point Pn+I in terms of

those (/7.) at all other points.

The set of equations due to the constraint X C= ') leads to

the conditions:

Equation (5.2) is also a congruence condition since outside the

interval Lf,I.I 9-' is zero. Indeed:
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(q -'"J
from which eq.(5.I) follows since is constant in each sub-

interval: ()  .1 ) ,

5.2 Hern-u'te splines L 3

Soace and ooerators are now chosen as:

, C2s , T= / .eU, n-.I
x 

J x
so that now dimZ= 2ff- (see remark I,Sect.2).

From L2 one qets:

i) y ; ,,

iii) The derivatives of order (q-I) and (q-2) are discontinuous

(set JDJ of dimension 2).

iv) /and its derivatives of order up to (q-3) are continuous (set

. C of dimension (q-2)

Thus, upon eq (4 .4 -+.S i< s,= ,- -s/
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The (2n+q) coefficients satisfy the q equations:

The second equation follows from eq.(4.5) C-31.

For conventional splines the /(-satisfy the (q) conditions [27

which lead to the same conditions (5.3) at the extremal points.

The space of Hermite closed splines is of dimensions(2n).

One more class of closed splines will now be considered.It is

new insofar as it has not been introduced before. Its classical

counterparts is well known. The new formulation will be used.

Results are stated concisely.

5.3 Data are linear combinations of values of a function and its

first derivative.

The spaces and operators are defined as:

H. (c) ; / 7

n-_7< ,:,<. _ 4: '_. :J+ g: '.,j
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where the constants WV, r are not all vanishing. From -3 :

ii) As the operator Tis the same as in the previous two cases

the '. will be the same.

iii)The derivatives of order (q-I) and (q-2) are discontinuous

(set DJ of dimension 2) and are related by the:

iv) ?'and its derivatives up to order (q-3) are continuous (set

SCj of dimension (q-2)).

Thus, upon ea.(4.4)

where the (n+q) the coefficients P,,'satisfy the equations:

The relevant properties of these classes of closed splines are:

I) jj is a oolynomical of deqree (2a-I) in each open interval
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2) 6,is continuous on C tooether with its first (2q-3) derivatives

3) at each ooint (Z) the discontinuities of the (2q-2)-th and (2q-1)

-th derivatives are such that:

4) <is such that:

The set of functions of /(C) satisfying the first three conditions

contitutes the n-dimensional closed spline space Sc.

The unioueness conditions read L3 :

¢ (z>L) + -.-h

imoly 'L) 0

6. Concludino remarks.

A new formulation for the characterization of closed splines has

been derived.

This new formulation makes it possible to use a number of facts

already known from the theory of classical splines and helps gaining

a deeper understandina of the differences between the two types of

spl ines.

The aoolicatio of this new formulation is esemplified for three

classes of splines. Two of them had already been derived lI 7,

L2] with the direct approach. They have been considered in order to

further clarify the essence of the new formulation.

The 1 third class has been deduced here for the first time.



-20-

The new formulation by passes lon and tedious developmentsand

makes it almost immediate to deduce the closed spline counterpart

of known classical splines.

The new formulation concerns only the characterization of closed

splines. All other relevant properties ( existence uniqueness;/

extremal oronerties enuivalentwith a minimum problem) are those

exDonded and discussed in the original derivation of the theory
A

LI] and have conseauently not been repeated here.
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Closed Smoothing Splines.
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CLOSED S!1OOTHINrI SPLINES

I. INTRODUTION

In comoutationsl aerodynamicsit is often necessary to solve interpol

tina oroblems related to airfoils, i.c. to closed curves.

Usino classical spline functions to interpolate airfoil's ordirates

Prescribed on a finite set of points is unsatisfactory on many

imoortant acconuts, as fully discussed in [l]. Similar situations

arises in all other interpolatino problems. The case of Hermite

snl'ne functions ( the data to be interpolated represent values of

the functions and of its first derivate at a aiven set of points)

was discussed in C21.

The main short cominas can be briefly described, in ceneral terms,

as follows. W.4hen the data to be interpolated are prescribed on a set of

(n j) ncints t-belonnina to a closed curve (e.q. the airfoil) and

conventional snlines are used, then the first and last points must be

taken as coincident ' )+ (closure point-usually the airfoil's

trailinc edne). As a consequence:

i unwanted (and unnecessary) discontinuities are introduced at the

closure noint;

ii 'a number of derivaties of the unterpolatino spline vanish at the

closure noint and this may turn out to be too oenalizin, -n oractical

aonlications, especially with splines of low order;

iii)the decree of smoothness of the interpolating function is neither

Quantificable nor uniform over the closed contur with the accuracy

beinn very ooor at the closure point;

iiii'the internolation function does not satisfy any minimization

oroblem and thus all the advantages'comected with this fact are

lost.

To overcome all these shortcomings the author developed a theory

for a new classes of splines, referred to as closed splines (I],

based on the qeneral abstract-space spline theory detailed in (3).
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The ans-3ct sDace aonroach presents the following main advantages:

i) existence and uniqueness can be proved; ii)general characteri=

zations of the splines can be given; iii) the equivalence between

an interoolation oroblem and a minimization problem can be

estaolisned- iiii) extremal and other important properties of the

soIines can be demosrated.

This -aoer addresses, with the same approch, another important class

of orolems of frequent occurrence in computational aerodynamicS:

namely the one solved by smoothina solines.

To clarify the issues involved, consider the case in which the

data to be interoolated represent the values el of a function at

a civen set of points S .

in many cases the data prescribed are not exact but approximate,

i.e. affected by either errors or uncertainties. It thus makes

little sense to have the interpolating function f assume exactly the

values 7" at the points and one would rather like to achieve a

s etable compromise between the "smoothmess" of the interpolating

function and the "approximation" of the prescribed data Lj.

The classes of splines achieving this compromise are called

"smoothing" splines.

The formulation uf smoothing problems solved by rlassical

-moothina solines and their properties are well known C3) and can be

summarized as follows.

Given a closed interval, reduced through st*(table normalization

to Ed), 1J; ( pI) points_(z ) with:

and (t/i) real numbersz( leu. n +)- the smoothing spline function

of order 1- (r+ I) cirresp ondina to the set JZ: - J, where is a

positive constant, is the unique function (76I- Z Jiwhich solves the

followinq minimum problem:

+ L
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where . flis the Hilbert space of real functions P(r) defined on

L6ij and having a square-interarable Otderivative The space

quantifies the degree of smoothness, the coefficient 5characterizes

the relative importance that one assignes to the smoothness and the

anoroximation of data.(More generally, different weights can be

prescribed for each point).

When one sets f(Z.) =k the minimum problem (1.1) reduces to the

one Qertaining to the interpolating splines LI,31 and, for q=(x-t I)

the interpolating spline is the unique polinominal of degree ( s !t

oassinn throuckthe points f( )r, .

Smoothina and interpolatina splines belong to the same subspace

S. of real functions s (t, defined on L6 Ij and such that [3T:

a) s(t) is a oclynomial of degree (2q-1) in each of the open intervals

b) s(2) and its first (2q-2) derivatives are continue-s on

c) the derivatives of s('4) from orders q to (2q-I), included,

vanish at the noints&(Z =O) and (z I).

The interpolating spline for the set iL.is the unique element C

of S such that: tTL & /4Z &9,'i1.

The smoothing spline 7for the set t:3jis the unique element of S

such that: n l

where: -z6- _ & -;i (.-

is the discontinuity (jump) of the (2q-I)-th derivative of (rat the poin

Since the smoothing spline belongs to the same space S as the

interoolating snline, it is evident that when the set of points belong

to a close! contour, smoothina prot-ems exhibait all the previously

mentioned shortcomings.

Thus the need for developing a theory of closed smou.ning
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splines exists and is substantiated by the same consideration

that were made in LIZ] when dealing with interpolation problems

on closed curves.

In this paper the general theory of closed smoothing splines is

developed. it forms the basis for the subsequent consruction and

study of different classes of smoothing splines( normal, Hermite,

Fourier,Trigonometric, local averange and so forth [3).

As a first example of application of the general theory, the

normal closed smoothing splines, corrispondingto the problem

discussed above, are derived and their propertes studied.

As in CI] and E2-J, the presentation does not follow the logical

order. To facilitate a more wi4e spread comprehension and use

of normal closed, smoothing splines their definition,

characterization and properties are first stated without proof

in section (2). The general Hilbert space theory of closed

smoothing splines is then developed in sections 3.

The last section 4 presents the proof of the statements made

in Section 2 concerning existence, uniqueness)characterization,

extremal and other relevant properties.
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2. NORMAL CLOSED SMOOTHING SPLINES.

2.1 DEFINITION

Let C be a sufficiently smooth and regular closed contour.

Denote by Ethe curvilinear coordinate along C measured from an

arbitrary initial point 4 and normalized with respect to the

leytqthof C so that O- Z!-i. The point~will be referred to as

the closure point of the contour and it is characterized by

either values Z--Otand '- - of Z7

Consider (n) arbitrary succes 4  e pointsQ.( 1: I ) on

C, let 2j be their curvilinear coordinates with:

0 ::- Z' .... / Z- e I

and prescribe n real numbers (t,) and a positive constant

The closed smoothing spline-Ctjof degree (q) corresponding

to the ( n) conples ( Zr Z': ) ( I 1fl) is defined as the

unique element of ft( C) such that:

.

#CC
in order for T-6t(C) to be such a closed smoothing spline

it is necessary and sufficient that:

a) )(&)be a Dolinomial of degree (2q-1) in each open interval:

C.-I, / r Z ) / - - , ,/ Z":t/), . . ,- ( , " )

b) 5i&)be continuous on C together with its fb.rst (2q-2) derivatives, i.e

(2.2)
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C) O) be such that:

/ (2.3)

where : q-t).(z I - . 0--1-2} -() ( Z -.

-. t ,, t d'scotir, s ;y F the (2o-I)-th derivative at the

point E,,, the discoutinuity at the closure point being defined

as: C2

The set of functions ( 6f{(C) satisfying the first two conditions

constitute the space -Sof the closed spline functions correspon=

ding to the set is a subspace of H(C) of dimension (n).

Interpolating and smoothing spline functions relative to the set

2 iare subspace of the same space

Fo. Interpolating splines a replace(t-y the conditions

2.2 CHARACTERIZATION

Introduce the function[33:

i f Z -2o (2.4)

- 0 if z-Z,; < 0

An element b&//iC) belongs to the subspace.cof closed

spline functions corresponding to {Z-J iflit is representable
Sas: I-- ' ~ Z -

-Z(2.5)

where the n coefficient land the2q coefficientsosatisfy the

following (2q) equations L{Id

74_l

-, 2kJ: 2. 6,-

I- I0 Ii i
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The function defined by eqs. (2.4) is continuous on C together

with its first (2q-2) derivatives. Its (2q-I)-th derivative is

discontinuous at Z:2, the discontinuity being equal to (2q-I)j[31

The (2q-l)-th derivative of 6CL)is given by:

Hence it is piecewise conslant in'each open sub-interval and:

=. n

Thus the (n) coefficients /represent the values of the

discontinuity of at the points Q

Since for -=I it is ZKO and Z- -

- e closure pointis thus in no-way differentiated from the

other (interior) points.

Given (n) arbitrary real numbers (1Z;) and a real constant

there is a unique closed smoothing spline corresponding to

the sets , - such that:

- =-(2.8)

Consequently the system of (2-tZ-) equations(2.6),(2.8),

linear in andI; admits of a unique solution. When the (lt 2 ) coefE-'

ficients apoearinq the eq (2.5) are so obstained, 3(r) becomes

the unique smoothingYpoblem (2.1).

When eqs. (2.3) are replaced by the equations:

X'C 7'. )~ = 4t' I Z 72-

the solution of the system formed by these equations and eqs.(2.6)

is still unique.The new coefficients , thus derived, when

sostitued in eq. (2.5), define the ',nique interpolating closed
A

spline - )which solves the minimum problemfIJk

formally obtained from the problem (2.1) by setting "

-- ,, ,eantm R T ]III~tjJ i•
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2.3. PROPENTIES

The closed smoothing spline r corresponding to the set

has the properties a),b),c), described in section(2.I).

Plus,, obviously, all properties of closed splines. Thus, for

instance, the first of equations (2.6) represents the congruence
r' (zf.- I)

conditions for the discontinuities OJ 5"" L2-J, for any element 6 St

and any function H HCK)the following relation holds LII,

(2.9)

In particular:

(2.10)

When is a closed smoothing spline 3 eq. (2.3) holds and

eq. (2.9) becomes: _

and eq. (2.10) still holds fors:G-.

The minimum problem solved by T(Z) is a particular case of the

following more general extremal properties.

Given kn) arbitrary but fixed (7), if T is the unique element of

:such that:

then:

a) for any f (C):

and 05is the unique element having this propety.

The original minimum problemu(2.1) follows from eq.(2.12)

for s=o.
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2.4. COMPARISON WITH CLASSICAL SMOOTHING SPLINES.

The classical smoothing spline over ( nil ) points Qis repre=

sentable as 3  :

77- + . I(2.13)

The (n n coefficients F, J/represent the unique solution of the

following system of equations:

,- o ~(2.14)

The soace 5.of classical splines is the set of all sof the form

Oiven by eq. (2.13) with the coefficients satisfying only the first

(q) eqs.(2.14).

When eqs. (2.14) are used for the set of points belonging to a

closed contour, and 4 t: n t. Since the coefficients ,

in eq. (2.13) are uniquely determined it follows that:

i) at the closure point ( ) the condition r=4,.1 guaraktees

only the continuity of : its derivatives, up to the order

_-I)included, will not be continuous(unless the problem's data

satiify very paricular synmetry conditions) and their disconti=

nuities are uniquely determined.

ii) the subsequent derivatives, up to the order (2q-2), are

continuous but vanish identically (see sect. I.)

This has to be contrasted with the closed smoothing spline

which is continuous throught together with its first (2q-2)

derivatives, the properties at the closure point being in no-w-

different from those at the other points.

The classical smoothing spline has (q+iA41) parameters: if one

introduces ( 9-I ) additional parameters to impose the missing

continuity of the (1 -1 ) derivatives at the closure point, one

would get a function with a total of(t-n -+I ) - ( -1 )=(2q *nL-)

parameters. These are indeed the number of parameters appearing
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in the definition, eq.(2;5), of the closed smoothing spline. This

rather naive approach does not however indicates how the additional

oarametersshould be introduced, what systemof equations should be

formulated for their unique determination(clearly the greatest part

of eqs. (2.14) cannot be retained) and, most important of all, no

h'its cnuld be obtained as to how to determine the properties of these n

functions.

The obstract approach, leading to the results presented in

sections 2.1 through 2.3, provides in the more natural and correct

maimer the answers to all questions above.
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3 THE SMOOTHING SPLINE THEORY IN ABSTRACT SPACE

3J, ARBITRARY HELBERT SPACES.

The needed basic results of the HI-lbert space formulation of

smoothing spline function theory are summarized here for ready and

convenient reference ( sec r3I for greater details).

LetX,Y,Z, be three real HZIbert spaces with norms 'I'''1K /

H." tU } i11 ; and let T -X->- ; P: X->Z be two linear

continuous ooerators which, without any loss of generality, are

supDosed to be onto.

Given any fixed ZeZand any real constant ?>0 consider the

followinn minimum problem 1 T31)

The element(T-,if it exists, is called the smoothina spline

corresponding to (/,4
Introduce the Helbert space P, cartesian product of Y and Z

endowed with the scalar product:

where <, >F denotes the inner product in the Helbert space F.

Then if L; X/-'Yis the linear continuos operator defined by:

and i f:

where 0 denotes the null element of Y, the minimum

problem (3,1) can also be formulated in the space P as:

where iI.l-2 denotes the norm of P associated with scalar product

(3.a).
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The followino existence and uniqueness theorem holds.

THEOREM I. The solution of problem (3,d) exists for any z E 2
iff VCT)-rW(f ') in closed in X and is nuique iff, in addition,

NLCT) () !VNf(A)-{&j. Here N(B) denotes the null space of the

operator B.

The characterization of the smoothing spline function is given

in the following theorem.

THEOREM 2. Under the hypothesis of theorem I, 13E X/is the

smothin spline corresponding to(T,A,Z,j ) iff:

Thus the smoothing spline space S is the subspace of X defined by:

or, equivalently, on account of the definition of the adjoint of

L; by:

S C- Y/~L (ii

where the prime denotes, here and in what follows, the adjoint of

an operator; R(P) is the range of the operator B and the adjoint

L' of L is defined by:
I / ._

The second definition follows from the first one on account of

the oroperties of adjoint operators and of the fact that L
' F~ F').-

=> 1= >

From the definition (3,7) it also follows that:

1, f4
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REYARK I

It can be realy shown L-3j that S does not depend on ( ) and it
SN

thus coincides with the s~aceAof the spline fonctions defined by

the operators T and A.

THEOREM 3. For any fixed ZG? there exists a acique element -EZ

such that:

%.3 S->2 [=/I

thit space S can be characterized as LA]:

where N (-) denotes the null space. Hence -'S S iff:
T' T C- LtQP _-7'

Hence'T s')

and, upon eq. (s), S' - -  since L'Z L T'7 " i W and

-I

W -( ) denotes the inverse of an o: rator.

REMARK 2.

The corresponding theorem for interpolating splines ensures the

existence of a unique element 6 % such that PG-= Z

The characterization of a smoothing spline which leads to its

pratical evaluation in contained in the following corollary of

Thorem 2.

COROLLARY (Characterization) 1~moothing soline corresponding to

(T,A,z, ) iff there exists A{6Z sjuch that:

-ndee d- fo eaZqs. • and - AU-)

Indeed, from eqs. (3.Z) and (39):
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Z L't~ LZp r

from whnich eqs. (.-10) follow with - . The first of eqs.

(3 ) shows that )9',( !E R'= NT) where ( ) denotes the

orthoconal subsDace)and the second equality follows from the

properties of adjoint operators.

The estremal properties of the smoothing splines are condensed

in the followina theorem.

THEOREM 4. If z is an arbytrary but fixed element of Z and G'is the

unioue elemente of S satisfying the condition (1(o), then:

a) for any :
I I T ('S"- --J Il 11 -- " B s ll =

and '-is the unique element of X having this property.

The minimum problem (3,1) follows from equation (3,12) when(s) is

taken to he the null element of S.

REMARK 3.

The corresponding extremal properties of the interpolating

sDlines LI es are formally recovered by stting =Oand B the

null operator.

,.ZFINITE SPACE Z

For the case of specific interest here the number of

"constraints" is finite. The space Z is consequently finite

and, accordina to thorem I, existence is automatically

guaranted whereas uniqueness requires that N(T) be also finite.

Sunpose then that ZC P , with the usual inner product, and

that N(T) is of dimensious 1. Then L31
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a) the operator A can be expressed as:

where the K are Y-indeoendent linear continuous functionals on X;

b) if:

then 4
_ , . !

c) the followinq characterization theorem holds (see Corollary):

THEOREM 5. 76 < is the smoothing spline corresponding to (T, , .

, ) iff there exist n coefficients : such that:

LfL (3,1-)

REMARK 4.

The corresoonding theorem for interpolating splines is formally

recovered by replacing the last (n) conditions in eqs. (3.15) with

the conditions -2' < K r >

Upon the remark I the first equation characterizes the spline

space S corresponding tc (T Hence:

and the extremal properties of the smoothing splines described by

Theorem 4 can be formulated as:

THEORE11 6. If z in an arbitrary element of Zand -is the unique

element of S satisfyinq the condition (3,1-)., then:

a) for any x -/:
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J'h /)L' )// Z- C2 16)

and any other(-6S havino this property belongs to the set:

b) for any S

and Tis the unique element of X having this property.

The different classes of smoothing spline functions that can be

obtained from the above abstract formulation depend on the choice

of X, Y.Tand 2.
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4. NORMAL CLOSED SMOOTHING SPLINES. EXISTENCE, UNIQUENESS AND CHARACTERIZA-

Let C be a sufficiently smooth and regular closed contour. Take

X X .43(C) and 3P./1(C) with their standard inner products. Denote

by ' the curvilinear coordinate along C measured from an arbitrary

point and normalized with resoect to the length of C.

For the operator T: /= C)-> >=H(Jtake the -Y, derivative

with respect to (z:). For ZCI? tet the .functionals

be defined by:

w i t h j -r z7

The null spaces of the operators A and Tare then given by [IT

N L(T) I ~'(C) /
Hence their dimensions are equal to (n) and to (I), respectvely so

that Y1cTl)n '(')=1O} orovided n : The operator

1 L(CJ/t°CcJ is defined by:

so that:

The minimum oroblem (3,1) reads:

: L- C)- 7

and, accordina to theorem I, it has a unique solution, for any r,

as lona as vi> i.

The existence and uniqueness ofo-(- ) is thus established.

Its characterization is accomplished through theorem 3 .
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From, eq. (.iF with " . (t?-- -

eq. . wand from eq. (44) one has,

subsequently-

xx

where, acccrding to theorem 5, the-Umust satisfy the condition:

IqI

stating that (P9k ') must belona to A/T)

As dim NLT)zI , eq. (4, ) reduces only to the requirement that

be trthoaonal to unity. On account of eq. (4,5) this

leads to:

The characterization of a function 5- satisfying eqs. (4,S) and(-,6)

was developed intl I

when dealing with closed interpolating splines.

This finding is consistent with the fact that, as mentioned

in paragraph (2), the space of spline functions corresponding to

T,Pr) is the same, whether one deals with interpolating or

smoothing splines L I
The details will not be repecLted here and only the relevant

results will be stated.

The function C'd)can be expressed as:

where the (tlj)coefficients and isatisfy the() equations CIJ

2~~~~~~J L~~5t~#' 40

' --- (4 )

L~L?

with:
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3
7Y >jVL

4,i L9)
Eqs.< ipress the vanishing of the discontinuities of 6-and of its

first ( -2_) derivatives at the closure point Ocharacterized by

either values Z=0* or _= / of .

The function given by eq. (4,I)is continuous on C to=

gether with its first ( -Z ) derivatives. The discontinuity:

of the derivative of 4'1 at the point alis given by:

The other n equations needed to compute the (,1+9 ) coefficients

and J are given by eqs. (41,6).

Accordi toeqs. (3,), (3,9) and (,-) and the definition (3.3) of

inneYrTn P the space of closed spline¢is defined by:

Hence, for any )( GItic) n -

or,account of eq.(44:YF '.xZ-

This last relation is the same as that derived in [and once again

reflects the fact that the space 5makes no reference to the tyDe

of closed spline, whether interpolating^.5moothing.

The closed smoothing spline 6T&S. is obtained by integra=

ting eq. (1, ) q times and using the arbitrary constants to impose

the continuity of 6' and of its first ( I-/ ) derivatives at the

closure pointlQ, so as to make

The extremal properties formulated in section ( ) follow

from theoremen 6 with T- I and AC=L/04given by eq. (4.').
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This concludes the proof of the statements made in Section I
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